Основное меню

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Методическая копилка

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Обучение грамоте

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Русский язык

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Литературное чтение

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Математика

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Окружающий мир

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

 

Основными, базисными понятиями курса математики начальных классов являются понятия "число” и "величина”. Это подчеркивается и в программе по математике для начальных классов школы, и в методических пособиях. Тем не менее даже сам термин "величина” никак не приживается в практике работы учителя, а по-прежнему бытует термин "именованное число” или "составное именованное число”.

В нашу задачу не входит анализ понятия "величина” с математической точки зрения. Речь пойдет об изучении величин в начальных классах только с точки зрения методической, в аспекте развития познавательной самостоятельности учащихся, активизации их деятельности в процессе изучения величин. Следует коснуться некоторых особенностей данного понятия, руководствуясь которыми учитель будет формировать у детей "интуитивное понятие” величины.

Во-первых, величина — это некоторое свойство предметов.

Во-вторых, величина — это такое свойство предметов, которое позволяет их сравнивать и устанавливать пары объектов, обладающих этим свойством в равной мере.

В-третьих, величина — это такое свойство, которое позволяет сравнивать предметы и устанавливать, какой из них обладает данным свойством в большей мере.

Усвоения названных особенностей данного понятия учитель достигает посредством использования в своей работе различных практических заданий познавательного характера, представляющих своего рода проблемные ситуации, решение которых учащиеся находят в процессе самостоятельных практических действий.

Рассмотрим изучение единиц длины в 1 классе.

В процессе изучения данной темы ученики знакомятся с такими единицами длины, как сантиметр, дециметр, метр. Устанавливается связь между ними — одни единицы измерения длины выражаются через другие, отрезки сравниваются по величине, увеличиваются или уменьшаются на заданную величину отрезка.

Естественно, что методика изучения единиц длины может строиться по-разному. Общепринятая методика изучения этого вопроса известна, повторять ее здесь не будем. Но заметим, что при такой методике в сознании учеников нет правильного представления о самой сущности операции измерения и о роли различных единиц измерения. Ученики нередко смешивают единицы длины с инструментом, при помощи которого производится измерение,— с линейкой. Чтобы избежать этого и достигнуть достаточно глубокого понимания детьми сущности измерения, целесообразно использовать иной вариант объяснения, который заключается в следующем.

После того как ученики познакомятся с понятием "отрезок”, выяснят, что значит равные и неравные отрезки, и познакомятся со способом сравнения их (путем наложения отрезков друг на друга и путем приложения отрезков друг к другу), учитель знакомит детей с измерением отрезков с помощью мерок. Введение данного этапа позволит акцентировать внимание учеников на понятии мера, что создаст благоприятные условия для более осознанного перехода к знакомству с сантиметром.

Перейдем к изложению сути данного этапа. Прежде всего учитель доводит до сознания учеников, что отрезки можно измерять разными мерками. При этом выясняется, какую мерку удобнее использовать в каждом случае. Для этой цели учитель заранее заготавливает полоски длиной в 30 см, 15 см, 7,5 см и ставит перед классом задачу: "На доске начерчены два отрезка (отрезки имеют длину 90 см и 120 см и расположены так, чтобы не было видно, какой из них имеет большую длину). С помощью этой полоски нам нужно выяснить, какой из отрезков длиннее”. (Предлагается полоска в 30 см, но длина ее не указывается.) Задание вызывает большой интерес: ведь ученики сами должны догадаться, как решить поставленную перед ними задачу. Прикладывая полоску сначала к одному отрезку, затем к другому, они выясняют, что в первом отрезке она укладывается 3 раза, а во втором 4, и самостоятельно делают вывод: "Второй отрезок длиннее, так как 4>3”. Учитель предлагает второе задание: "Кто может доказать, что второй отрезок длиннее первого, использовав для этой цели другую мерку?” (Предлагается мерка в 15 см.) Ученики опять откладывают данную им мерку по длине первого и второго отрезков, получают: в первом мерка уложилась 6 раз, во втором 8 раз. Соответственно полученному результату делают вывод: "Второй отрезок длиннее первого, так как 8>6”. Таким образом, ученики сами убеждаются, что для сравнения длин отрезков можно пользоваться любой меркой.

"А теперь, — говорит учитель, — я сделаю так: первый отрезок измерю второй меркой, а второй отрезок измерю первой меркой”. Ученик у доски выполняет задание и получает: в первом отрезке мерка уложилась 6 раз, а во втором 4 раза. "Что же получилось? — продолжает учитель. — 6>4, значит, первый отрезок длиннее второго? Может быть, мы допустили ошибку и поспешили с выводом?”

В результат разбора данной ситуации ученики осознают, что для сравнения длин двух отрезков необходимо измерять их одной меркой.

После того ученики работают в тетрадях. Они чертят отрезок в 8 клеток. Учитель говорит, что длину этого отрезка можно также измерить различными мерками. "Можно измерить отрезок меркой в 2 клеточки. Тогда каким числом выразится длина отрезка? (4.) Можно измерить данный отрезок меркой в 4 клеточки. Тогда каким числом выразится длина отрезка? (2.) Значит, прежде чем назвать длину отрезка, надо договориться о той мерке, которой будем пользоваться при измерении. Так. если Коля будет измерять отрезок меркой в 1 клетку, а Петя тот же отрезок меркой в 4 клетки, и они скажут при этом, что у одного получилось 8, а у другого 2, то получится, что отрезки у каждого разные. Поэтому все люди договорились между собой о мерках, какими они будут измерять длины отрезков. С одной такой меркой длины мы познакомимся сегодня. Это сантиметр. Начертите отрезок в две клеточки, — этот отрезок называется сантиметром. Теперь, для того чтобы измерить какой-то отрезок, мы будем пользоваться этой меркой длины. Начертите отрезок в 10 клеток. Сколько в нем сантиметров? В 8 клеток, в 6 клеток и т. д.”. Ученики изготовляют из бумаги меру в 1 см и с ее помощью проверяют, сколько сантиметров содержится в отрезках (4 см, 6 см и т. д.).

После проведенной беседы дети переходят к знакомству с линейкой. Знакомясь с линейкой, ученики выделяют на ней отрезок в 1 см. Учитель предлагает задания, которые способствуют совершенствованию вычислительных навыков. Например, дан отрезок. Требуется с помощью линейки определить его длину (длина отрезка 3 см). Ученики прикладывают линейку так, чтобы число 0 на линейке совпадало с началом отрезка, тогда конец отрезка будет совпадать с числом 3 на линейке (этот случай разбирается подробно). После этого учитель ставит вопросы: "А если приложить линейку так, чтобы начало отрезка совпадало с числом 2 на линейке, с каким числом на линейке будет совпадать конец отрезка? Почему?” Некоторые из учеников могут сразу назвать число 5, объяснив свой ответ: 2 + 3 = 5. Тот, кто затрудняется в ответе, может прибегнуть к практическому действию.

Далее учитель ставит аналогичные вопросы: "Если начало отрезка будет совпадать с числом 4 на линейке, то с каким числом па линейке будет совпадать конец отрезка?” (С числом 7, так как 4 + 3 = 7.)

Можно предложить ученикам задания и на обратное действие — вычитание. Для этой цели предлагается другой отрезок, например 4 см. Ученики могут установить его длину любым способом, прикладывая линейку. После этого учитель спрашивает: "Если конец отрезка совпадает с числом 9 на линейке, то с каким числом на линейке будет совпадать начало данного отрезка?” (С числом 5, так как 9 — 4 = 5.)

Переходя к знакомству с новой для детей единицей длины — дециметром, учитель должен так построить свой урок, чтобы подвести их к самостоятельному выводу о том, что измерять отрезки не всегда удобно сантиметром. Если отрезки большие, то удобнее и единицы измерения выбрать побольше. Для этой цели можно опять вернуться к сравнению двух отрезков, например 50 см и 70 см; предложив ученикам полоски в 1 см и 1 дм (можно не сообщать сначала длину этих полосок), поставить передними вопрос: "Какой полоской удобнее пользоваться для измерения этих отрезков?” В данном случае и одна и другая полоски укладываются в отрезках, но маленькую нужно много раз откидывать— это неудобно, поэтому лучше воспользоваться второй мерой. В первом отрезке она уложится 5 раз, во втором 7 раз, 5<7, значит, первый отрезок короче второго. Учитель сообщает что помимо единицы длины — сантиметра существуют и другие единицы измерения. Так, вторая единица носит название дециметр. Ученики чертят в тетрадях отрезок в 10 см и записывают. 10 см = 1 дм. Ученики находят на линейке 1 дм (начало отрезка совпадает с числом 0 на линейке, а конец с числом 10), и учитель ставит перед ними следующие вопросы:

1. Начало отрезка совпадает с числом 3 на линейке. Какое число будет стоять на линейке в конце отрезка длиной в 1 дм. (Число 13так как 1 дм=10 см, 3+10=13.)

2. Конец отрезка совпадает с числом 17 на линейке. С каким числом на линейке совпадет начало этого отрезка, если его длина равна 1 дм? (С числом 7, так как 17—10 = 7.)

3. Какой длины отрезки можно сложить, чтобы получить отрезок, равный 1 дм? (Отвечая на вопрос, дети повторяют состав числа 10.)

Следующий этап — это измерение отрезков, длины которых можно обозначить числом, выраженным единицами двух наименований. Методические рекомендации к изучению этого вопроса даны в книге "Математика в I классе”. Тем не менее многие учителя спешат скорее перейти к заданиям типа: 1 дм 5 см = = ..... см, 18 см= ... дм ... см. Такая поспешность зачастую приводит к тому, что в сознании учеников не формируется четкого представления о необходимости выражения длины отрезка в виде числа с единицами двух наименований, часто запись: 2 дм 6 см — ученики относят к двум отрезкам и не воспринимают ее как запись длины одного отрезка.

Чтобы помочь ученикам осознать этот факт, можно организовать работу следующим образом. Предлагается отрезок (на доске). длина которого равна 85 см (длина отрезка не сообщается). Для установления длины данного отрезка сначала дается полоска в

1 дм. Ученики прикладывают полоску к отрезку. Она укладывается 8 раз и остается еще маленький отрезок, в который данная мера не укладывается. Можно, конечно, приложить линейку и измерить длину отрезка в сантиметрах, но из методических соображений здесь ставится задача измерения отрезка с помощью разных единиц измерения. Дети могут в таком случае предложить измерить весь отрезок мерой в 1 см, но это очень долго, а значит, нерационально. Таким образом, ученики приходят к необходимости измерения одного отрезка с помощью двух единиц измерения и выражают длину отрезка в единицах двух наименований.

Можно предложить аналогичное задание, поставив задачу сравнения длин двух отрезков (задание опять должно быть выполнено с помощью мерок). Работу по формированию понятия о числе, выраженном в единицах двух наименований, можно продолжить после того, как ученики познакомятся с метром. Можно предложить практическое задание, в результате выполнения которого появится необходимость выразить длину отрезка в единицах трех наименований (м, дм, см). На доске изображается отрезок в 235 см. Нужно определить длину этого отрезка с помощью модели 1 м, полосок длиной в 1 дм и 1 см. Ученики сначала прикладывают к отрезку полоску в 1 м, она укладывается 2 раза. Длину оставшегося отрезка уже нельзя измерить с помощью метра. Дети берут вторую мерку в 1 дм (она откладывается в оставшемся отрезке 3 раза). Остается отрезок, в который дециметр не укладывается. Берется мерка в 1 см. В результате длина отрезка выражается числом 2 м 3 дм 5 см, которое ученики получают в процессе самостоятельных практических действий, что, безусловно, способствует не только осознанию понятия меры, но и усвоению числа, выраженного в единицах нескольких наименований.

Использование при изучении мер длины приведенных заданий помогает усвоению, довольно трудных для учеников вопросов (перевод одних мер в другие, выражение длины отрезка в единицах нескольких наименований и другие вопросы) и способствует более интересной организации работы на уроке. Такого же продумывания последовательности заданий (ситуаций) требует и знакомство учащихся с единицей массы. Опираясь на имеющиеся у детей представления, учитель строит свою работу следующим образом:

Ситуация 1. На столе учителя стоят две одинаковые по цвету и форме коробки (могут быть спичечные коробки), но одна коробка пустая, а в другую положен какой-то тяжелый предмет.




Учитель предлагает сравнить коробки. Никаких внешних признаков различия учащиеся, естественно, обнаружить не могут. И все-таки учитель отмечает: различие между ними существует (учащиеся заинтересованы, они пытаются разгадать, в чем же это различие). У некоторых возникает желание рассмотреть коробки поближе, взять их в руки. Если этого не случится, учитель сам предлагает ученикам сделать это. Взяв в руки коробки, учащиеся обнаруживают, что одна коробка тяжелее другой. Таким образом, учитель вводит понятие массы, опираясь на восприятие детей, которое выражается в терминах: "легче”, "тяжелее” (масса одной коробки больше, масса другой коробки меньше).

Ситуация 2. Учитель предлагает ученикам две книги, которые очень незначительно отличаются по массе, и спрашивает, какая книга легче, какая — тяжелее. Задача учителя в данном случае заключается в том, чтобы мнения учеников по поводу массы одной и другой книги разошлись. Возникшие разногласия учитель использует для того, чтобы дети убедились в необходимости весов. (Оказывается, не всегда можно определить, какой предмет легче, а который тяжелее, особенно если предметы отличаются по массе незначительно.) Но этот вопрос можно решить, воспользовавшись для этой цели весами. Полезно иметь на уроке чашечные весы и практически убедиться, которая из книг имеет большую массу. Учитель знакомит учащихся с чашечными весами, рассказывает их устройство, зарисовывает схематическое изображение весов (рис. 1).

Внимание учеников следует обратить на положение стрелок, когда на чашках весов нет никаких предметов, а затем пронаблюдать, как изменится положение стрелок, когда на чашки весов будут положены книги. Ученики и сами могут высказать предположение о том, как изменится положение стрелок.

Ситуация 3 носит уже проблемный характер. Решение ее подводит учащихся непосредственно к измерению массы предметов.

На столе три предмета: гиря в 1 кг, пакет, массой очень незначительно отличающейся от гири (например, 990 г), и другой пакет массой 1010 г. Учитель предлагает ученикам сначала без весов ответить на вопросы: масса какого предмета самая маленькая? Масса какого предмета больше и, наконец, какой предмет самый тяжелый?

Естественно, что мнения учащихся опять могут разделиться. Тогда учитель предлагает подумать, как решить эту задачу с помощью весов. В данном случае не столь важно, будет ли решена эта задача учениками самостоятельно или с помощью учителя. Важно, чтобы учащиеся поняли, что в качестве меры целесообразно использовать гирю в 1 кг, т. е. сравнение сначала массы одного пакета, а затем другого с массой гири позволяет им найти ответ на поставленный вопрос. Учитель вводит единицу массы — 1 кг.



Ситуация 4. На одну чашку весов кладется брусок массой 2 кг (масса не сообщается ученикам), а на другую — гиря массой в 1 кг (масса сообщается).

— Что можно сказать о массе бруска? (Она больше, чем 1 кг.)

Учитель ставит на правую чашку еще гирю массой в 1 кг. Чашки весов уравновешиваются.

— Что теперь можно сказать о массе бруска? (Его масса 2 кг.)

После этого учитель сообщает, что вместо двух гирь по 1 кг можно поставить гирю в 2 кг (демонстрирует). Знакомит учеников с гирями в 3 кг, в 5 кг. С помощью этих гирь учащиеся затем измеряют массу различных предметов (которые учитель, конечно, должен подобрать заранее). Учащиеся приходят к выводу: масса измеряется в килограммах. 1 кг — это единица массы.

Схематическое изображение весов учитель может затем использовать, так же как и линейку, для совершенствования вычислительных навыков.

— Какие гири следует поставить на. правую чашку весов (рис. 2), чтобы чашки весов уравновесились? (Для данного случая: 5 кг, 1 кг, 2 кг; 3 кг, 3 кг, 2 кг; 1 кг, 2 кг, 3 кг и 2 кг.)

Знакомство учащихся с величинами и единицами их измерений имеет не только практическое значение, но сам процесс изучения данного вопроса может оказать большое влияние на развитие познавательных способностей учащихся, на формирование у них умения видеть проблему и находить пути ее решения. В данном случае само содержание предоставляет учителю такую возможность и ее не следует упускать.

Приведем примеры ситуаций, которые учитель может использовать на уроке по теме "Литр”.

Ситуация 1. Предлагаются два сосуда с водой. Один узкий, другой широкий. Уровень воды в обоих сосудах одинаков. Кроме этого, на столе учителя два стаканчика различной емкости (обозначим их № 1 и № 2).

— Выясните с помощью мерки № 1, в каком сосуде воды больше.

Учащиеся выясняют, что в широком сосуде таких мерок 7, а в узком 5. 7>5. Делается вывод.

Затем используется мерка № 2. В широком сосуде их 4, а в узком 2. 4>2. Делается вывод.

Затем учитель предлагает измерить количество воды в широком сосуде меркой № 2, а в узком — меркой № 1. Обсуждение результатов приводит учеников к выводу, что для сравнения количества воды в сосудах необходимо пользоваться единой меркой.

Ситуация 2. Два сосуда: один широкий, другой узкий. В одном и другом налита вода. Уровень воды в узком сосуде выше, чем в широком. Учитель задает вопрос:

— В каком сосуде воды больше?

Ответы противоречивы. Нужно решить проблему — как убедиться, в каком же сосуде воды больше. После того как разобрана первая ситуация, учащиеся сами предложат использовать для этой цели третий сосуд; он будет выполнять функции мерки. Будет интересно, если в один и другой сосуд налито одинаковое количество воды. Учитель подводит итог: для того чтобы убедиться, какая емкость больше (где воды больше), нужно использовать мерку. Общепринятой меркой является литр (проводится аналогия с сантиметром и килограммом).

После того как введена единица измерения емкости, решаются различные практические задачи. Например: "В одном сосуде 5 л, а в другом 3 л воды. Как сделать, чтобы количество воды в сосудах было одинаково?” (Из первого отпить 2 л, тогда в каждом сосуде будет по 3 л, или из первого перелить во второй 1 л.) Задача решается практически. Оформляется запись:

1-й способ: 5—2 = 3, 3 = 3.

2-й способ: 5—1=4, 3+1=4, 4 = 4.

"В одном сосуде 3 л, а в другом на 2 л больше. Что можно сделать, чтобы во втором сосуде воды было больше на 1 л?”

Задача решается практически, но требует от ребенка проведения рассуждений, в процессе которых ученик должен как бы предвосхитить будущий результат. Полезно рассмотреть различные способы решения задачи: 1) Учащиеся могут предложить долить в первый сосуд 1 л воды. Если такой способ предложен, он проверяется практически. Проверку, которая связана непосредственно с умением измерять емкость с помощью мерки, может осуществить любой ученик. В результате измерения — в первом сосуде 4 л, во втором 5 л, 5>4 на 1.

Возможен и такой вариант: в первый сосуд долить 2 л, а во второй долить 1 л. Результат проверяется практически: 6>5 на 1. Таким образом, в процессе решения задачи, требующей от учеников определенных рассуждений, формируется необходимое умение измерять емкости.

Уроки, связанные с измерением величин, вызывают у учащихся большой интерес, если учитель использует на них практические

задачи, позволяющие учащимся осознанно усвоить характерные особенности вводимых понятий.

При формировании представлений о величинах учитель опирается на опыт ребенка, уточняет и расширяет его. Так при сравнении длин отрезков учащиеся сначала используют такие приемы, как сравнение "на глаз”, наложение, приложение, затем для сравнения используют различные мерки. В процессе выполнения упражнений учащиеся подводятся к выводу о необходимости введения единиц измерения. На следующем этапе происходит знакомство с измерительными инструментами, приборами (линейка, весы) и формирование измерительных умений и навыков. Введение новых единиц измерения приводит к необходимости установления соотношений между ними, которые усваиваются учащимися при выполнении различных упражнений. Заключительным этапом изучения данного вопроса в начальных классах является рассмотрение сложения и вычитания величин, выраженных в различных единицах измерения, а также умножение и деление величины на число.

Данным подходом можно руководствоваться не только при изучении длины отрезка и массы тела, но и при формировании представлений о площади фигуры, единицах ее измерения, а также единицах измерения времени. Единый методический подход способствует формированию общего представления о величинах.

Творчески работающие учителя стремятся организовать работу на уроке так, чтобы доля самостоятельности ученика в процессе познания была как можно большей. Задача учителя — умело руководить процессом познания. Это большая и сложная работа. Учитель должен не только подобрать те или иные задания и упражнения, но и установить между ними логическую связь, т. е. расположить их в такой последовательности, чтобы они не только соответствовали принципу "от простого к сложному”, но и осветили тот или иной вопрос с различных сторон и тем самым подвели ученика к нужному выводу.

Иностранные языки

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Наша родина

Рисование

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Проверка учебных достижения

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

Мы - всезнайки

Яндекс.Метрика Рейтинг@Mail.ru